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Abstract
The finite q-oscillator is a model that obeys the dynamics of the harmonic
oscillator, with the operators of position, momentum and Hamiltonian being
functions of elements of the q-algebra suq(2). The spectrum of position in
this discrete system, in a fixed representation j , consists of 2j + 1 ‘sensor’-
points xs = 1

2 [2s]q, s ∈ {−j,−j + 1, . . . , j}, and similarly for the momentum
observable. The spectrum of energies is finite and equally spaced, so the
system supports coherent states. The wavefunctions involve dual q-Kravchuk
polynomials, which are solutions to a finite-difference Schrödinger equation.
Time evolution (times a phase) defines the fractional Fourier–q-Kravchuk
transform. In the classical limit as q → 1 we recover the finite oscillator
Lie algebra, the N = 2j → ∞ limit returns the Macfarlane–Biedenharn
q-oscillator and both limits contract the generators to the standard quantum-
mechanical harmonic oscillator.

PACS numbers: 02.20.Qs, 02.30.Gp, 42.30.Kq, 42.30.Va

1. Introduction and the basic postulates

Discrete models which are counterparts to well-known continuous systems, and in particular
those which contract to the standard harmonic oscillator, are of fundamental interest in
theoretical physics. Moreover, finite discrete models are also of interest for the parallel
processing of signals, where the input and output are registered by a finite sensor array, and
the processing element is a shallow planar waveguide—an oscillator which can carry only a
finite number of states [1]. The salient purpose of such a device is to perform a finite analogue
of the fractional Fourier transform [2].

The aim of this paper is to develop the theory of a finite quantum oscillator with
the dynamical symmetry given by the quantum algebra suq(2), on the basis of a finite-
dimensional representation. We call this model the finite q-oscillator. There are many

0305-4470/04/215569+19$30.00 © 2004 IOP Publishing Ltd Printed in the UK 5569

http://stacks.iop.org/ja/37/5569


5570 N M Atakishiyev et al

algebraic constructions which can be used for building up different models of q-oscillators.
For example, the authors of [3] discussed a generalized Heisenberg–Weyl algebra, determined
by the relations J0J+ = J+f (J0), J−J0 = f (J0)J−, [J+, J−] = J0 − f (J0), where f is a
polynomial. This algebra has finite-dimensional representations, which are appropriate for
constructing such a model. However, the existence of finite-dimensional representations is not
sufficient for the development of an explicit model, because one has to derive explicit analytic
formulae for its wavefunctions, their momentum content and an analogue of the Fourier
transform (mapping eigenfunctions of position operator to eigenfunctions of momentum) to
allow for a meaningful picture of phase space for this system. For the above-mentioned
generalized Heisenberg–Weyl algebra it is not yet known how to do that.

Previously we developed a model of the finite oscillator, constructed on the basis of finite-
dimensional irreducible representations of the Lie algebra su(2) [1, 4]. This paper derives
from the realization that the postulates we used to define the finite oscillator model have a very
natural generalization that includes q-algebras [5]. These postulates are:

1. There exists an essentially self-adjoint position operator, indicated Q, whose spectrum
�(Q) is the set of positions of the system.

2. There exists a self-adjoint and compact Hamiltonian operator, H, which generates time
evolution through the Newton–Lie, or equivalent Hamilton–Lie equations

[H, [H,Q]] = Q ⇐⇒
{

[H,Q] =: −iP
[H,P ] = iQ

(1)

where [·, ·] is the commutator. The first Hamilton equation in (1) defines the momentum
operator P, while the second one contains the harmonic oscillator dynamics. The set of
momentum values of the system is the spectrum �(P ) of P.

3. The three operators, Q,P and H, close into an associative algebra, i.e., satisfy the Jacobi
identity

[P, [H,Q]] + [Q, [P,H ]] + [H, [Q,P ]] = 0. (2)

The second and third postulates determine that [Q,P ] must commute with H, which
implies that it can only be of the form [Q,P ] = iF(H), where F is some function of H
(including constants) and the i is placed to make F(H) self-adjoint, but do not otherwise specify
this basic commutator further. For a constant F(H) = h̄1̂, one recovers the standard oscillator
algebra H4 = span {H,Q,P, 1̂}, which contains the basic Heisenberg–Weyl subalgebra
W1 = span {Q,P, 1̂} of quantum mechanics. In our first work [1] we examined the cases
which, in the unitary irreducible representations of spin j = 1

2N (N ∈ {0, 1, . . .} fixed),
correspond to the linear function F(H) = H − (

j + 1
2

)
1̂ =: J3, and so the operators close into

the Lie algebra so(3) = su(2) = span {Q,P, J3}.
In this paper we study the case when, for q := e−κ , the basic commutator is

[Q,P ] = iFq(H) H = J3 +
(
j + 1

2

)
1̂ (3)

Fq(H) = e−2κJ3
cosh 1

2κ

2 sinh 1
2κ

− e−κJ3
cosh

(
j + 1

2

)
κ

2 sinh 1
2κ

(4)

= 1
2 e−κJ3

(
e−κJ3 cosh 1

2κ − T2j+1
(
cosh 1

2κ
))/

sinh 1
2κ (5)

where Tn is the Chebyshev polynomial of the first kind, and q ∈ (0, 1] or κ ∈ [0,∞). In
particular, F1(H) = J3 returns the previous su(2) case [1].

The explicit form of the right-hand side in (3) is explained by the following circumstance.
The condition [Q,P ] = iF(H) leaves a small number of possibilities for choosing Q and P.
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Figure 1. Left: spectra of positions of the finite q-oscillator of 13 points (j = 6) as functions
of q; bullets mark the positions for q = 0.7, 1 (the Lie case), and 1.4. Right: the equally spaced
spectrum of energies (independent of q, also for j = 6).

If we wish to deal with such Q and P, for which it is possible to find explicit analytic expressions
for wavefunctions, then we are led to Q and P, given by formulae (23) and (24) below, and
therefore Fq(H) has the form given by (4) and (5).

An important ingredient for the postulates of harmonic oscillator dynamics is an
unambiguous correspondence between the physical observables of position, momentum and
energy, with the elements of the associative algebra. In section 2 we recall the main relevant
results on the algebra suq(2) and its standard representation basis. The suq(2) nonstandard
basis, investigated in [6, 7], is introduced in section 3 to exhibit our proposed correspondence
explicitly in terms of the generators of suq(2). With our postulated choice, the position and
energy spectra in the (2j + 1)-dimensional representation j = 1

2N of suq(2) will be

�(Q) = xs = 1
2 [2s]q = sinh sκ

2 sinh 1
2κ

s ∈ {−j,−j + 1, . . . , j} =: s|j−j (6)

�(H) = En = n + 1
2 n ∈ {0, 1, . . . , 2j} =: n|2j

0 (7)

as shown in figure 1. We recall the definition of the q-number for q = e−κ :

[r ]q = [r ]q−1 = −[−r ]q := q
1
2 r − q− 1

2 r

q
1
2 − q− 1

2

= sinh 1
2 rκ

sinh 1
2κ

. (8)

Note that the q-number of an integer r is Ur−1
(
cosh 1

2κ
)
, the Chebyshev polynomial of the

second kind. The spectrum of momentum is the same as that of position, �(P ) = �(Q). The
classical limit is limq→1 [s]q = s, when the q-algebra suq(2) becomes the Lie algebra su(2);
then, the set of positions become equally spaced and we are back at the previously known finite
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oscillator [1]. But for all other values of the deformation parameter q, the ‘sensor points’ of
the system are concentrated towards the centre of the interval, while the endpoints are spread
farther apart. Yet the energy spectrum remains an equally spaced set, and therefore the system
follows harmonic motion.

The finite q-oscillator wavefunctions are the overlaps between the position and energy
eigenbases. They are written out in section 4 in terms of the dual q-Kravchuk polynomials,
and are orthonormal and complete over the sensor points of the system. The momentum
representation of these wavefunctions is addressed in section 5 with the Fourier–q-Kravchuk
transform, and in section 6 this transform is fractionalized. The evolution in time of a finite q-
oscillator (or equivalently, the parallel processing of a finite signal along the axis of a shallow
planar waveguide), is the two-fold cover of the fractional Fourier–q-Kravchuk transform
matrix; the metaplectic sign appears thus for half-integer values of j , which correspond to
finite systems of an even number of points. In section 7 we introduce the concept of an
equivalent potential for discrete systems which is based, as in the continuous case, on the
existence of a ground state with no zeros. Finally, in section 8 we verify that the contraction
limits q → 1 and N = 2j → ∞ of the algebra suq(2) reproduce the known results for the
finite oscillator and the continuous q-oscillator. The corresponding limits for the wavefunctions
however, present further challenge.

2. The algebra suq(2) and its standard basis

The quantum algebra suq(2) is the associative algebra generated by three elements, usually
denoted as J+, J−, J3, subject to the commutation relations

[J3, J±] = ±J± [J+, J−] = [2J3]q . (9)

Equivalently, writing J± = J1 ± iJ2, we characterize the algebra suq(2) by

[J2, J3] = iJ1 [J3, J1] = iJ2 [J1, J2] = i
2 [2J3]q . (10)

The first two commutators in (10) have the structure of the oscillator Hamilton equations (1),
while the third one involves the q-number (8), which distinguishes q-algebras from Lie
algebras, the latter corresponding to the case q = 1. The following element in the covering
algebra of suq(2) commutes with all others:

Cq := J 2
1 + J 2

2 +
[
J3 − 1

2

]2
q

+ 1
2 [2J3]q − 1

4

= J+J− +
[
J3 − 1

2

]2
q

− 1
4 (11)

and is called its Casimir operator.
It is convenient to have a realization of the suq(2) generators in terms of first-degree

differential operators, acting on spaces Hj of functions of a formal variable x, and depending
on the numerical irreducible representation label j . This is

J+ := J1 + iJ2 ↔ x
[
2j − x

d

dx

]
q

= x[j − J3]q (12)

J− := J1 − iJ2 ↔ 1

x

[
x

d

dx

]
q

= 1

x
[j + J3]q (13)

J3 ↔ x
d

dx
− j j ∈

{
0,

1

2
, 1, . . .

}
fixed. (14)
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The set of power monomials xj+m|jm=−j are eigenfunctions of J3 and provide the standard
basis for the irreducible space Hj , of finite dimension 2j + 1. The functions of the basis were
chosen in [6, 7] with the following constants:

f j
m(x) := q

1
4 (m2−j 2)

[
2j

j + m

]1/2

q

xj+m (15)

where the q-binomial coefficient
[

m

n

]
q

is defined (using the standard notation of q-analysis
[8]) for m � n non-negative integers by[m

n

]
q

:= (q; q)m

(q; q)n(q; q)m−n

= (−1)nqmn− 1
2 n(n−1) (q

−m; q)n

(q; q)n
(16)

(z; q)n :=
n−1∏
k=0

(1 − zqk) n = 1, 2, 3, . . . (z; q)0 = 1. (17)

For any two complex vectors a, b ∈ Hj

a =
j∑

m=−j

αmf j
m b =

j∑
m=−j

βmf j
m (18)

there is a natural sesquilinear inner product

(a, b)Hj
:=

j∑
m=−j

α∗
mβm (19)

with respect to which the standard basis is orthonormal. The action of the suq(2) generators
and Casimir operator on the standard basis is well known

J3f
j
m = mf j

m J±f j
m = √

[j ± m + 1]q[j ∓ m]qf
j

m±1 (20)

Cqf
j
m = cqf

j
m cq := [

j + 1
2

]2
q

− 1
4 . (21)

These equations are of course independent of the realization of the basis vectors f
j
m by the

power monomials f
j
m(x) in x.

The spectrum of the diagonal generator J3 (see (14) and (20)) is linear and bounded,
as that of a finite version of the quantum harmonic oscillator. Indeed, this is our choice
for the finite q-oscillator Hamiltonian, displaced so that the ground state has energy 1/2,
namely

H = J3 + j + 1
2 Hf j

m = (
n + 1

2

)
f j

m n := j + m (22)

where n|2j

0 is the mode number that counts the number of energy quanta. At this point we are
presented with what would appear as a ‘natural’ assignment for the position and momentum
operators, Q ↔ J1 and P ↔ −J2, because it would be the simplest generalization of the
previously studied q = 1 case [1, 4]. This choice would bring the first two commutators in
(10) to reproduce correctly the two Hamilton equations in (1), while the third commutator
[Q,P ] would have the form (3) with Fq(H) = 1

2 [2J3]q = sinh κ
(
H − j − 1

2

)/
2 sinh 1

2κ . In
this ‘naive’ model however, the spectra of Q and P are not algebraic; they must be computed
numerically as roots of a polynomial equation of degree 2j + 1.

3. The nonstandard basis

While we do not discard the model suggested at the end of the previous section, we find it
more attractive to propose a correspondence between the physical observables of position and
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momentum, Q,P , and the nonstandard (also called twisted) operators (see [9–11]), which
have the virtue of possessing an algebraic spectrum xs := 1

2 [2s]q, s|j−j . The position (and
hence momentum) observables will be thus identified with the following operators:

Q = J̃ 1 := q
1
4 J3J1q

1
4 J3 (23)

−P = J̃ 2 := q
1
4 J3J2q

1
4 J3 (24)

while the Hamiltonian H is associated with J3 by (22) as before.
We note that while the q-number (8) displays symmetry under q-inversions, q ↔ q−1,

[r ]q = [r ]q−1 , the identification of tilded operators in (23), (24) preserves this symmetry with
the concomitant reflection J3 ↔ −J3. This means that the ground state of a q < 1 oscillator
is the top state of its q−1 > 1 partner.

The commutation relations among the nonstandard operators and J3 are

[J3,Q] = −iP [J3, P ] = iQ (25)

[Q,P ] = i
2q

1
2 J3

(
q− 1

2 J+J− − q
1
2 J−J+

)
q

1
2 J3 =: iFq(Cq, J3)

= i
(
e−κJ3

[(
Cq + 1

4

)
sinh 1

2κ + 1
2 cosech 1

2κ
] − 1

2 e−2κJ3 coth 1
2κ

)
(26)

where q = e−κ as before. The operator Fq(Cq, J3) defined in (26) commutes with J3 and is
also diagonal in the standard basis; in the irreducible representation j ,

Fqf
j
m = e−2mκ cosh 1

2κ − e−mκ cosh
(
j + 1

2

)
κ

2 sinh 1
2κ

f j
m (27)

but its spectrum is not a good candidate for an oscillator Hamiltonian, because it is not equally
spaced (unlike (7)), and so the motion would not be harmonic, but dispersive. In terms of the
position and momentum generators (23), (24), the Casimir operator (11) acquires the form

Cq = sech 1
2κ(Q2 + P 2) eκJ3 + Dq(J3) (28)

Dq(J3) := sech 1
2κ

([
J3 − 1

2

]2
q

− 1
2 e−κJ3 coth 1

2κ + 1
2 cosech 1

2κ
) − 1

4 . (29)

We recall a previous phase-space picture for the finite oscillator of 2j + 1 points,
considered in [12], as the (classical) sphere Q2 + P 2 + J 2

3 = j (j + 1), having circular

sections of square radius Q2 + P 2 = (
j + 1

2

)2 − (
J3 − 1

2

)2 − J3. For suq(2), the corresponding
surface now has the section

Q2 + P 2 = ([
j + 1

2

]2
q

cosh 1
2κ − [

J3 − 1
2

]2
q

+ 1
2 e−κJ3 coth 1

2κ − 1
2 cosech 1

2κ
)

e−κJ3 (30)

that we show in figure 2 for selected values of q. Phase space for the finite q-oscillator is
suggested thus as q-dependent pear-shaped spheroids, tip-up for q < 1 and tip-down for q > 1
(recall the q ↔ q−1 symmetry with the inversion of J3). The q-harmonic oscillator evolution
(i.e., a phase times the so-defined fractional q-Fourier–Kravchuk transform) will rotate this
space around the J3 vertical symmetry axis of the spheroid.

In this finite q-oscillator model we interpret the eigenvalues xs of Q := J̃ 1 as the discrete
values of the position observable. The eigenfunctions g

j
s (x) and eigenvalues of this nonstandard

operator were found in [6], and they are of the form

Qgj
s (x) = xsg

j
s (x) xs = 1

2
[2s]q = sinh sκ

2 sinh 1
2κ

= −x−s s|j−j (31)

gj
s (x) = γ j

s

(
q

1
4 (1−2j)x; q

)
j−s

(−q
1
4 (1−2j)x; q

)
j+s

= g
j
−s (−x) (32)
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Figure 2. Section of the phase-space spheroid of the finite q-oscillator. It is the classical
surface where the Casimir operator Cq has the constant value corresponding to the suq (2)

representation j .
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γ j
s := q

1
2 (j+s)

√[
2j

j + s

]
q2

1 + q−2s

2(−q; q)2j

. (33)

They are normalized with respect to the inner product (19), and are orthogonal because they
correspond to distinct eigenvalues xs . This basis of 2j + 1 functions g

j
s (x), s|j−j we call the

position basis. A signal consisting of 2j + 1 values �s , sensed at the positions xs (given in
(6)), is

� =
j∑

s=−j

�sg
j
s ∈ Hj (34)

and can be realized either as a function of x, or as a (2j + 1)-dimensional column vector with
components numbered by s|j−j .

4. Finite q-oscillator mode wavefunctions

We have now two bases for Hj : the standard basis
{
f

j
m

}j

m=−j
of mode n = j + m (and energy

En = n+ 1
2 ), and the nonstandard basis

{
g

j
s

}j

s=−j
of position xs = 1

2 [2s]q . In the realization of
suq(2) generators given in (12)–(14), the mode basis is realized by the power functions in (15),
and the position basis by (32). We can use this realization to find the unitary transformation
between these two orthonormal bases, and thus define the finite q-oscillator wavefunctions by
the overlap

�(2j |q)
n (xs) := (

gj
s , f

j
m

)
Hj

{
of mode n = j + m n|2j

0

on points xs = 1
2 [2s]q s|j−j .

(35)

By construction, this set of functions is orthonormal and complete under the Hj inner
product (19).

The overlap (35) is obtained by expanding the function g
j
s (x) of (32) into a power series

in x, which is then

gj
s (x) =

j∑
m=−j

�
(2j |q)

j+m (xs)
∗f j

m(x) f j
m(x) =

j∑
s=−j

�
(2j |q)

j+m (xs)g
j
m(x). (36)

The expansion of g
j
s (x) in x is [6]

gj
s (x) = γ j

s

j∑
m=−j

q
1
4 (j+m)(j+m−1)

[
2j

j + m

]
q

1/2

Kj+m(λ(j − s);−1, 2j | q)f j
m(x) (37)

expressed in terms of the dual q-Kravchuk polynomials

Kn(q
−ξ + cqξ−2j ; c, 2j |q) := 3φ2

(
q−n, q−ξ , cqξ−2j

q−2j , 0

∣∣∣∣q; q

)
(38)

where 3φ2 is the basic hypergeometric function defined in [8], and the coefficients γ
j
s are given

in (33).
In the particular case of our concern, the argument of the dual q-Kravchuk polynomial is

λ(ξ) = q−ξ + cqξ−2j with c = −1 in (37), is given in terms of the positions xs = 1
2 [2s]q, s|j−j ,
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of the finite q-oscillator by

λ(j − s) = q−j+s − q−j−s = −2ejκ sinh κs

= 2q−j− 1
2 (q − 1)xs = −(

4ejκ sinh 1
2κ

)
xs (39)

and q = e−κ as before. From (37) thus, the finite q-oscillator wavefunctions of mode number
n = j + m, n|2j

0 , are

�(2j |q)
n (xs) = q

1
2 (j+s)+ 1

4 n(n−1)

√[
2j

j + s

]
q2

[
2j

n

]
q

1 + q−2s

2(−q; q)2j

×Kn

(
2q−j− 1

2 (q − 1)xs;−1, 2j | q
)
. (40)

The explicit expression for the dual q-Kravchuk polynomials in this case is

Kj+m(λ(j − s);−1, 2j | q) = 3φ2

(
q−j−m, qs−j ,−q−j−s

q−2j , 0

∣∣∣∣q; q

)

=
2j∑

k=0

(q−j−m; q)k(q
−j+s; q)k(−q−j−s; q)k

(q−2j ; q)k

qk

(q; q)k
(41)

where (z; q)k is defined in (17).
The lowest mode of the oscillator is (see (40) for n = j + m = 0),

�
(2j |q)

0 (xs) = q
1
2 (j+s)

√[
2j

j + s

]
q2

1 + q−2s

2(−q; q)2j

= γ j
s . (42)

The finite q-oscillator wavefunctions possess definite parity,

�(2j |q)
n (−xs) = �(2j |q)

n (x−s) = (−1)n�(2j |q)
n (xs) (43)

and, as is to be expected, in the limit q → 1 return the Kravchuk functions of the finite
oscillator [1]

lim
q→1

�(2j |q)
n (xs) = 2−j

√(
2j

j + s

)(
2j

n

)
Kn

(
j − s; 1

2 , 2j
)

(44)

with the classical Kravchuk polynomials, introduced by Kravchuk in [13].
The dual q-Kravchuk polynomials—as all polynomials—are analytic functions on the

complex plane of their argument. As before in the finite oscillator models [1, 4, 14], this
argument is the position coordinate, which can be analytically continued to real or complex
values X, even if the inner product of the space Hj is only over the point set {xs}, s|jj . As
to the q-Kravchuk wavefunctions (40) the factor in front of the polynomial is a function that
is analytic in the argument s within the interval −j − 1 < s < j + 1; this means that in the
position coordinate, analytic continuation is possible within the interval x−j−1 < X < xj+1.

The finite q-oscillator eigenfunctions are shown in figure 3 for a 25-point finite q-oscillator
(j = 12) showing the lowest, middle and highest modes, for selected values of q that include
for comparison the Lie case studied in [1, 4].

5. Fourier–q-Kravchuk transform to momentum space

The identification of the position and momentum operators, Q = J̃ 1, P = −J̃ 2 in (23), (24),
brings formulae (25) to the role of the two Hamilton equations (1). (This also holds for the
‘first’ choice using the standard basis, Q ↔ J1, P ↔ −J2, that we outlined in section 2, as
well as for all oscillator models, finite or standard.) The evolution of the finite q-oscillator
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Figure 3. Eigenfunctions of the finite q-oscillator of 25 points and modes (j = 12). The dual
q-Kravchuk wavefunctions �

(2j |q)
n (x) are organized in columns by the values q = 0.8, 0.9, 1 (the

Lie case) and 1.2; and in rows by their mode numbers n = 0, 1, 2, 12 (middle of the multiplet) and
24 (top energy state). The points are joined by straight lines for visibility.

over time in quantum mechanics, or along the optical axis in the waveguide model, is thus the
harmonic motion

e−iτH

(
Q

P

)
eiτH =:

(
Q(τ )

P (τ )

)
=

(
cos τ sin τ

−sin τ cos τ

)(
Q

P

)
. (45)
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Figure 3. (Continued).

This is a U(1) group of inner automorphisms of the suq(2) algebra, and of rotations of the
phase-space surface in figure 2 around its vertical axis. It covers twice the SO(2) cycle of
fractional Fourier–q-Kravchuk transforms, Ka

q , of power a = 2τ/π and angle τ ,

Ka
q := exp(−iπa(J3 + j)/2) = eiπa/4 exp(−iπaH/2). (46)
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For a = 1 we have the Fourier–q-Kravchuk transform Kq . The action of Kq on the
eigenbasis of position yields the eigenbasis of momentum,

g̃j
s (x) := Kqg

j
s (x). (47)

These functions have the properties and form

P g̃j
r (x) = −Yr g̃

j
r (x) Yr = 1

2 [2r]q = sinh rκ

2 sinh 1
2κ

= −Y−r r|j−j (48)

g̃j
r (x) = gj

r (ix) = g
j
−r (−ix) = γ j

r

(
iq

1
4 (1−2j)x; q

)
j−r

( − iq
1
4 (1−2j)x; q

)
j+r

(49)

where γ
j
r is the constant given in (33); the spectrum of momenta, Yr, r|j−j , is the same as that of

position (cf (31)). Since Ka
q is unitary under the inner product in Hj , the Fourier–q-Kravchuk

transforms of the finite q-oscillator eigenfunctions (35)–(40) of modes n = j + m, are

�̃(2j |q)
n (xs) := Kq�

(2j |q)
n (xs) := (

gj
s ,Kqf

j
m

)
Hj

= (−i)n�(2j |q)
n (xs) (50)

as in all oscillator models.
The Fourier–q-Kravchuk transform of a function or signal �, of values �(xs) = (

g
j
s ,�

)
Hj

on the finite, discrete sensor point set {xs}, s|jj , is defined by

�̃(xr) = (̃
gj

r ,�
)
Hj

=
j∑

s=−j

K(2j |q)
r,s �(xs) (51)

where the kernel is the overlap of the position eigenfunctions g
j
s in (32) with the momentum

eigenfunctions g̃
j
r in (49),

K(2j |q)
r,s := (̃

gj
r , g

j
s

)
Hj

. (52)

This kernel is given explicitly below in (56) with a = 1.

6. Fractional Fourier–q-Kravchuk kernel

The Fourier–q-Kravchuk transform (50) is fractionalized by the operator Ka
q in (46),

independently of the realization, on the mode eigenbasis of J3,

Ka
qf

j
m = exp(−iπa(j + m)/2)f j

m = exp(−iπna/2)f j
m. (53)

When we apply Ka
q on a finite, complex ‘signal’ function of 2j + 1 points,

�(xs) = (
gj

s ,�
)
Hj

=
j∑

m=−j

(
gj

s , f
j
m

)
Hj

(
f j

m,�
)
Hj

(54)

we obtain another such function, labelled by a,

�(a)(xs) := Ka
q�(xs) := (

gj
s ,Ka

q�
)
Hj

= (
K−a

q gj
s ,�

)
Hj

=
j∑

m=−j

(
K−a

q gj
s , f

j
m

)
Hj

(
f j

m,�
)
Hj

=
j∑

m=−j

(
gj

s ,Ka
qf

j
m

)
Hj

(
f j

m,�
)
Hj

=
j∑

m=−j

e−iπa(j+m)/2
(
gj

s , f
j
m

)
Hj

j∑
s ′=−j

(
f j

m, g
j

s ′
)
Hj

(
g

j

s ′ ,�
)
Hj

=
j∑

s ′=−j

K
(a,2j |q)

s,s ′ �(xs ′)

(55)
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where the fractional Fourier–q-Kravchuk transform kernel K
(a,2j |q)

s,s ′ is a (2j + 1) × (2j + 1)

matrix of elements given by the bilinear generating function [15, formula (8.15)]

K
(a,2j |q)

s,s ′ :=
2j∑

n=0

�(2j |q)
n (xs) e−iπna/2�(2j |q)

n (xs ′)∗ (56)

= γ j
s γ

j

s ′ βs,s ′(t)8W7(−q−2j−1t; qs−j ,−q−j−s , qs ′−j ,−q−j−s ′
,−t; q,−t) (57)

where

t := e−iπa/2 (58)

βs,s ′(t) := (qs−j t,−q−j−s t, qs ′−j t,−q−j−s ′
t,−t; q)∞

(qs−s ′
t,−qs+s ′

t, qs ′−s t,−q−s−s ′
t,−q−2j t; q)∞

(59)

and γ
j
s is given by (33). The function 8W7, defined in [8], is

8W7(a; b, c, d, e, f ; q, z) :=
∞∑

k=0

1 − aq2k

1 − a

(a, b, c, d, e, f ; q)kz
k

(q, qa/b, qa/c, qa/d, qa/e, qa/f ; q)k
(60)

where (a, . . . , c; q)∞ := (a; q)∞ . . . (c; q)∞ and (a; q)∞ = ∏∞
k=0(1 − aqk) in accordance

with (17). This function can be expressed in terms of the basic hypergeometric function 8φ7

(see [8, section 2.2, formula (2.5.1)]), with coefficients which allow it to be reduced to the
basic hypergeometric function 4φ3

8W7(−q−2j−1t; qs−j ,−q−j−s , qs ′−j ,−q−j−s ′
,−t; q,−t)

= (−q−2j t, q−j−s ′
,−q−j+s ′

, t; q)∞
(−q−j−s ′

t, q−j+s ′
t, q−2j ,−t; q)∞

4φ3

(
q−j+s ′

,−q−j−s ′
, t,−t

−q−j−s t, q−j+s ,−q

∣∣∣∣q, q

)
. (61)

We also note that due to relation (a; q)n = (a; q)∞/(aqn; q)∞, the expression for βs,s ′(t) in
(59) can be reduced to

βs,s ′(t) = (qs−j t; q)j−s ′(q−j+s ′
t; q)j−s(−q−j−s ′

t; q)j−s(−q−j−s t; q)j+2s+s ′

(−q−2j t; q)2j

. (62)

Naturally, Ka1
q Ka2

q = Ka1+a2
q and K0

q = 1̂. The ‘phase correction’ by πa = 2τ which we

introduced in (46) implies that K4
q = 1̂ (as the ordinary Fourier integral transform), while the

fourth power of the oscillator evolution operator exp(iτH) is −1̂ for the full rotation angle
τ = 2π . This is the analogue of the metaplectic sign of the waveguide case (see [16], cf
[2]), where the U(1) subgroup generated by the latter covers twice the SO(2) of the former.
The parity is conserved under the fractional Fourier–Kravchuk transformation because J3

commutes with the inversion of phase space. And again, in the limit q → 1 we recover the
previous Fourier–Kravchuk kernel expressed in terms of the Wigner ‘little-d’ functions [4],

lim
q→1

K
(a,2j |q)

s,s ′ = K
(a,2j)

s,s ′ = e−iπja/2(−i)s−s ′
d

j

s,s ′
(

1
2πa

)
. (63)

7. Equivalent potentials

In ordinary quantum mechanics, the ground state �0(x) of a system with a potential V (x)

and energy E0 > −∞, has no zeros; thus, the Schrödinger equation determines the potential
energy of the system from the ground state,(

−1

2

d2

dx2
+ V (x) − E0

)
�0(x) = 0 ⇒ V (x) − E0 = 1

2

d2

dx2
�0(x)

/
�0(x). (64)
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As a well-known example we have the harmonic oscillator, whose ground state is �0(x) ∼
e− 1

2 x2
, so d2

dx2 �0(x) = (x2 − 1)�0(x) and (64) yields correctly V (x) − E0 = 1
2x2 − 1

2 .
In the case when the system is discrete over the set of points xs = sh + x0, with integer s,

which are equidistant by h, an equivalent potential may be defined following (64). We qualify it
as equivalent because the discrete systems that have been studied (such as Kravchuk, Meixner
and Hahn systems), obey Schrödinger-type difference equations which do not separate into
a sum of terms, where one is readily identifiable with the kinetic term of the second-degree
difference operator, plus a potential term that is only dependent on position xs . The symmetric
second-difference operator, acting on functions of xs , can be expressed in terms of the right-
difference and the left-difference operators ∇R and ∇L,

∇R := 



xs

= 1


xs

(e∂s − 1) = 1

xs+1 − xs

(e∂s − 1)

∇L := ∇
∇xs

= 1

∇xs

(1 − e−∂s ) = 1

xs − xs−1
(1 − e−∂s )

(65)

where 
 = e∂s − 1 = e∂s ∇. So, a difference analogue of the differential operator d2/dx2 in
(64) has the form

1

xs+1/2 − xs−1/2
(∇R − ∇L). (66)

Consequently, when the ground state of the system is ψ(s) := �0(xs ), the equivalent potential,
according to its quantum-mechanical correspondent in (64), is

V (xs) − E0 = 1

2ψ(s)[xs+1/2 − xs−1/2]
(∇R − ∇L)ψ(s)

= 1

2(xs+1/2 − xs−1/2)ψ(s)

(
ψ(s + 1) − ψ(s)

xs+1 − xs

− ψ(s) − ψ(s − 1)

xs − xs−1

)
. (67)

In the case of the finite Kravchuk oscillator, the set of values of position xs = s (h = 1
and x0 = 0) is finite: {xs}js=−j . Yet, the wavefunctions ψ(s) := �

(2j)

0 (xs ) can be analytically
continued in x everywhere except for branch-point zeros at x±(j+1) := ±(j + 1), which are due
to the square root of the binomial distribution. Thus, on the closed segment x−(j+1) � x � xj+1,
the second difference in (67) is defined for any real value of x in the interval x−j � x � xj .
A similar extension and range of validity holds for the Meixner and Hahn oscillator cases
[17, 18]. The lowest mode of the Kravchuk oscillator, where h = 1, is given in (42). From
this one derives the equivalent potential for the Kravchuk eigenfunction system

V (xs) − E0 + 1 = ψ(s + 1) + ψ(s − 1)

2ψ(s)

=
√

(j + s)(j + s + 1) +
√

(j − s)(j − s + 1)

2
√

(j + 1)2 − s2
. (68)

When the set of position values is not equally spaced, as is the case in the finite q-oscillator,
{xs}js=−j as in (31), we shall consider the differences with respect to the position coordinate

xs = 1

2
[2s]q = sinh sκ

2 sinh 1
2κ

⇒
{

xs+1 − xs = cosh
(
s + 1

2

)
κ

xs − xs−1 = cosh
(
s − 1

2

)
κ.

(69)

Taking into account that

ψ(s + 1) = q−s−1/2

√
cosh(s + 1)κ

cosh sκ

sinh(j − s)κ

sinh(j + s + 1)κ
ψ(s) (70)
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we arrive at the expression for the equivalent potential in the general case

V (xs) − E0 = 1

2q1/2 cosh
(
s + 1

2

)
κ cosh

(
s − 1

2

)
κ

×
{

qs
cosh

(
s + 1

2

)
κ

cosh sκ

√
cosh(s − 1)κ

cosh sκ

sinh(j + s)κ

sinh(j − s + 1)κ

+ q−s
cosh

(
s − 1

2

)
κ

cosh sκ

√
cosh(s + 1)κ

cosh sκ

sinh(j − s)κ

sinh(j + s + 1)κ
− 2q1/2 cosh

1

2
κ

}
(71)

for functions ψ(s) := �
(2j |q)

0 (xs) (see formula (42)). Obviously, in the limit when q → 1
(that is, κ → 0), this expression coincides with (68).

In figure 4 we show the ground states and the equivalent potentials of a range of finite
q-oscillators of 13 points (j = 6), among them the finite oscillator for q = 1 [1, 4]. As
in figure 3, we note that acceptable ground states occur here for q � 0.8 (this criterion
changes with the value of j ) while lower values of q present the same raised-wings problem
of interpretation. The corresponding potentials have an oscillator-type form for all values of
q and this property is of course likewise shared by the q-Kravchuk wavefunctions. A study of
these functions with attention to their oscillations and convergence should be undertaken but
this task is beyond the purpose of this paper.

8. Contraction of the algebra suq(2) → oscq

We consider a sequence of finite q-oscillators over sets of 2j + 1 points which increase in
number and density as j → ∞, while the mode number n = j + m remains finite, i.e., near to
the ground state n = 0 (for eigenvalues m of J3 near to −j ). The spectrum of the Hamiltonian
operator H = J3 + j + 1

2 of the q-oscillator retains its linear lower-bound spectrum (7) for
all j ’s in the sequence. In the case of the (q = 1) finite oscillator, the su(2) dynamical
algebra, wavefunctions and Fourier–Kravchuk transform, contract to the ordinary oscillator
algebra osc = span {Q,P,H, 1̂}. In the present q-case we follow an analogous contraction
to the q-oscillator model of Macfarlane and Biedenharn [19, 20]; nevertheless, there are some
important differences between the q- and non-q cases that we shall point out below.

The ‘sensor points’ of our finite q-oscillator (i.e., the spectrum of Q ∈ suq(2),�(Q)

in (6)) extend between x−j and xj , inside an interval which grows asymptotically with j as
∼q−j = ejκ (for 0 < q = e−κ < 1, κ > 0)—and are not equally spaced within. Our
contraction process will keep the range of positions finite by introducing, for each finite j , the
operators

Q(j) := wjQ P (j) := wjP (72)

scaled with coefficients whose asymptotic behaviour is appropriate,

wj := q
1
2 (j+ 1

2 )

√
xj

= e− 1
2 (j+ 1

2 )κ

√
2 sinh 1

2κ

sinh jκ
∼ qj

√
2(1 − q) = e−jκ

√
e− 1

2 κ sinh 1
2κ. (73)

The number operator, N := H − 1
2 = J3 + j , is assumed to act on a subspace of functions

whose mode eigenvalues n = j + m remain finite in n ∈ {0, 1, . . .}.
As we let j → ∞, the suq(2) algebra of the finite q-oscillator will contract to a different

q-algebra, that will characterize the ‘continuous’ limit of our finite model. The commutation
relations (25), which can be written as

[H,Q(j)] = −iP (j) [H,P (j)] = iQ(j) (74)
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Figure 4. Left column: ground states of finite q-oscillators, �(2j |q)

0 (x), of 13 points. Right column:
their equivalent potentials. The rows correspond to the values of q = 0.6, 0.8, 1 (the Lie case), 1.2
and 1.4.
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continue to be harmonic oscillator Hamilton equations. The third commutator (26), which is
characteristic of our suq(2) finite model, becomes

[Q(j), P (j)] = w2
j [Q,P ] = i

q(j+1/2

xj

Fq(Cq, J3). (75)

Acting on the subspace of functions whose mode numbers remain finite, from (27) we find
that the asymptotic behaviour of the right-hand side of (75) is

q(j+ 1
2 )

xj

Fq(Cq, J3) ∼ qJ3+j = qH− 1
2 = qN . (76)

When j → ∞, the formal limit operators Q(j) → Q and P (j) → P satisfy the oscillator
Hamilton equations (74) and

[Q,P ] = iqN N = H − 1
2 . (77)

The reader may be more familiar with the contracted algebra span {Q,P ,N} when it is
written in terms of the raising and lowering operators as

A± := Q ∓ iP = lim
j→∞

J̃± (78)

whose commutation relations are

[A+, A−] = 2qN A−A+ − qA+A− = 1̂. (79)

This we identify as the q-oscillator algebra oscq defined by Macfarlane [19] and Biedenharn
[20]. The j → ∞ limit of (78) yields

A+�
(q)
n (X) = √{n + 1}q�(q)

n+1(X) (80)

A−�(q)
n (X) = √{n}q�(q)

n−1(X) (81)

where {n}q := (qn − 1)/(q − 1) and

�(q)
n (X) = 1√

n!
(A+)

n�
(q)

0 (X) (82)

are mode eigenfunctions obtained from A−�
(q)

0 (X) = 0.
We would like to point out however, that before the limit j → ∞ is achieved, the spectra

of position and momenta, (31) and (48), are asymptotically constrained to a finite position
interval

|�(Q(j))| � wjxj ∼ 1/
√

2(q−1 − 1). (83)

Only in the q = 1 finite oscillator case [21], where xj = j , does the position interval grow to
the real line as ∼√

j , keeping equal distances ∼1/
√

j between neighbouring sensor points.
For any other 0 < q < 1, all points xs of �(Q(j)), except x±j , will crowd towards zero
in the middle of the interval. This feature of the contraction limit between q-algebras is at
variance with that encountered with Lie algebras, where one can extend the operation from
formal operators to finite Hilbert spaces of growing dimensions, to find limits from Kravchuk
to Hermite functions, and from Schrödinger difference to differential equations. This matter
also requires a separate, deeper analysis that we leave for a separate publication.
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9. Concluding remarks

We have constructed a model, ruled by the dynamical symmetry of the quantum algebra suq(2),
for a finite q-oscillator which has lower- and upper-bound spectra of equidistant energies; the
salient characteristic of the q-deformation is that the finite set of eigenvalues of the position
and momentum operators is concentrated toward the centre of the measurement interval.
The energy spectrum makes this model attractive for application in quantum optics (see, for
example, [11]), while the position and momentum spectra conform to the natural information
content (for example, the neural density around the fovea in the retina). Finally, the model
introduces a new and well-defined concept of phase space.
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